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Determining exponents in models of kinetic surface roughening
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One of the central objectives when simulating models of kinetic surface roughening is the calcu-
lation of the scaling exponents that describe the roughness of the surface and its temporal evolution.
This can generally be done by studying various correlation functions. In this paper it is shown that
in models that exhibit a crossover at large length scales the choice of the correlation function is

crucial:

Using the two-dimensional Wolf-Villain model as an example, it is shown that the expo-

nents obtained from the scaling behavior of the width or the height-height correlation function can
be almost twice as large as the correct values. Reliable estimates are obtained using the structure

factor or the time-time autocorrelation function.

PACS number(s): 05.40.+j, 81.10.Aj, 05.70.Ln, 81.15.Hi

I. INTRODUCTION

In the past ten years, starting with the discovery of
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g(z) ~z7% for z>1 (2a)
and
g(xz) =const for z K1, (2b)

Kardar, Parisi, and Zhang [1] that moving surfaces are
generically rougher than equilibrium surfaces, a huge va-
riety of models of kinetic surface roughening have been
proposed and investigated in numerical simulations [2].
Typically, the late stages of these growth processes are
characterized by generic scale invariance of the correla-
tion functions that is reflected in power-law behavior in
space and time. Since the corresponding exponents do
not depend on the microscopic details of the system un-
der investigation it is possible to divide growth processes
into kinetic universality classes according to the values
of these characteristic exponents. The association with
one particular class depends only on a few properties of
the growth dynamics such as conservation laws and the
importance of defects in the growing film. Thus the de-
termination of the scaling exponents allows conclusions
about the physical processes that dominate the dynam-
ics and is therefore of primary interest in Monte Carlo
simulations.

Exponents are usually determined by exploiting the
scaling behavior [3] of correlation functions such as the
height-height correlation function

G(r,t) =LY <{h(r +x,t) — h(x, t)]2>
=r¥g(r/E(1)), (1)

where h(r,t) is the local position of the moving surface
and L? is the size of system under investigation with d
being the dimension of the substrate. The correlation
length & ~ t!/# that appears in the argument of the scal-
ing function g corresponds to the wavelength of a typical
fluctuation. For late times so that r <« £(t), the cor-
relation function becomes time independent, whereas on
scales much larger than the correlation length the sur-
faces appears to be smooth, i.e., the correlation function
does not depend on the distance r. Thus the correlation
length separates these two regimes

1063-651X/96/53(4)/3209(6)/$10.00 53

which can be used to extract the roughness exponent ¢
[from (2b)] and the exponent {/z [from (2a)]. Alterna-
tively, the structure factor, which is related to the Fourier
transform of the height-height correlation function, can
be used

S(k,t) = (h(k,t)h(—k,t)) = 1 3~ (80 — €*7) G(r,1)
=k Vs(k%t), (3)

with v = 2¢ + d and h(k,t) = L~%23 [h(r,t) —
h(t)]e?™*, where h(t) is the spatial average of h(r,t). In
this case the asymptotics of the scaling function are

27y >z
s(2) ~ { mh e (42)
for £ < 1 and
s(x) =const for > 1. (4b)

The limiting behavior (4a) follows from the fact that the
noise is not renormalized for v < z as can be shown by
power counting. Thus the k£ modes with k < 2w /£(t)
propagate in an uncorrelated fashion S(k,t) ~ tk*~7.
For v > z this is no longer possible since S(k,t) must
not have a singularity in the limit £ — 0 at finite times.
Hence, the noise is renormalized as, for example, in the
Kardar-Parisi-Zhang equation [1].

The surface width W can be obtained as the sum over
either of the two correlation functions G(r,t) or S(k,t),

W2(t,L) = LY ([h(r,t) — B@®)]?)
=LY S(k,t) =53z »_G(r,t), (5a)

k r
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with

t¢/# for £(t) < L

Wt L) ~ LS for &(t) > L.

(5b)

In principle, any of the scaling laws (2), (4), and (5b) can
be used to determine the two exponents ¢ and z. It is
the purpose of this paper to show that the use of Egs. (2)
and (5b) can lead to results that grossly deviate from
the asymptotic values if the model exhibits a crossover
at some intermediate length scale l.. In fact, it will be
shown that the most accurate estimate of the dynamic
exponent z is obtained from the steady-state time-time
autocorrelation function

®(k,t) = lim (h(k,t + 7)h(~k,7))/S(k,7) = p(k*t),
(6)

which depends on the single scaling argument k*t.

II. FINITE-SIZE AND DISCRETENESS EFFECTS

There are two major differences in which Monte Carlo
simulations deviate from a continuum description of a
growth process through Langevin equations that belong
to the same universality class. First, the space variable
r is restricted to a discrete lattice and, second, r is lim-
ited by the system size. The latter restriction requires
the introduction of boundary conditions that are usu-
ally taken to be periodic. These two deviations from the
ideal continuum description have opposite effects on the
correlation functions in real and momentum space: The
discreteness of the lattice has basically no effect on the
height-height correlation function; it merely restricts the
evaluation to the lattice points. However, the finite lat-
tice constant introduces an upper cutoff in k space. As a
consequence, S(k,t) becomes a periodic function of the
components of k. This leads to a distortion of S(k,t) for
k < w since 8S(k,t)/0ki|x,=x = 0, i = 1,2, whereas
such a roundoff is not obtained from the correspond-
ing Langevin equation. In contrast, periodic bound-

ary conditions restrict the k values to k = 2f"(n, m),
n,m = 0,...,L — 1, but have only minor effects on the

form of the structure factor. However, periodic bound-
ary conditions lead to a rounding of the height-height
correlation function at » S L/2. These deviations from
the ideal power-law behavior complicate the determina-
tion of the scaling exponents from the scaling laws (2)
and (4). To illustrate this point let us look at the linear
Langevin equation

O:h(r,t) = v, V2h(r,t) — 14 V3V 2h(r,t) + n(r,t) , (7)
where 7 represents shot noise with
(n(r,t)) =0, (n(r,t)n(r',t)) =2Ds(r —r')é(t —t),

and vy,v4 > 0. To include discreteness effects the
Laplace operator is replaced by its lattice equivalent, e.g.,
V2h(r,t) = 3. [R(r',t) — h(r,t)], where r’ denotes the
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nearest-neighbor sites of site r. The structure factor is
easily calculated for Eq. (7). In the steady state, i.e., in
the limit ¢ — oo, it becomes

D ! (8)
va W @)

S(k) =

with A%(k) = 4[sin®(k1/2) + sin®(k2/2)] and ¢? = vy /vs.
Due to the crossover at k ~ q. the asymptotic behavior
S(k) ~ k=2 is found only at small ¥ < gq.. But, pro-
vided that ¢, > 2n/L, the extraction of the exponent
v = 2 is not affected by the periodic boundary condi-
tions or by discreteness effects since they only influence
the behavior at large k. The determination of the scal-
ing exponents from the height-height correlation function
G(r) is more complicated, since the exponent ¢ must be
calculated from the large-distance behavior r > 2m/q.,
the same regime that is distorted due to the periodic
boundary conditions. Thus one is forced to choose an
intermediate interval for the determination of ¢ so that
27/q. € v < L/2. The extent of this interval may not
be very well defined, as we will see in the next section.
The same difficulty does not exist for the structure factor
since the exponent « is always determined from the small
k limit of S(k).

III. THE TWO-DIMENSIONAL
WOLF-VILLAIN MODEL

The Wolf-Villain (WV) model [4] was the first model
introduced to investigate kinetic surface roughening in
the absence of desorption in order to model dynamics
of surfaces under conditions typical for molecular-beam
epitaxy. At each time step a particle is added to a ran-
domly chosen site of the substrate and the particle re-
laxes instantaneously to one of the nearest-neighbor sites
by maximizing the number of horizontal bonds. Subse-
quently it was found [5,6] that this simple relaxation rule
oversimplifies the diffusion dynamics and that so-called
full-diffusion models are required to get a more realistic
picture of the surface evolution. Nevertheless, the WV
model has inspired much research on kinetic roughening
phenomena. The two-dimensional variant of the model
was introduced by Kotrla et al. [7]. In both one and two
dimensions it was found that the surface is extremely
rough with ( ~ 1.4 [4] and ¢ ~ 0.7 [7], respectively.
Based on these results it was concluded that the model
belongs to universality classes described by Eq. (7) with
vy = 0. For two-dimensional substrates the data indi-
cated that an additional term [8] ~ V2(Vh)?2 should be
included in the equation of motion [7]. All these conclu-
sions were reached by studying exclusively the scaling be-
havior of the width (5b). These classifications were seri-
ously questioned by the work of Krug et al. [9], who mea-
sured surface diffusion currents as a function of the tilt
m = |Vh|. Whereas the results for the one-dimensional
WYV model were inconclusive because of severe finite size
effects, in d = 2 they found a small negative surface cur-
rent j(m) < 0 for m > 0. Since the coefficient v, in
Eq. (7) can be determined as v, = —j'(m = 0) it was
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concluded that the two-dimensional (d = 2) WV model
in fact belongs to the Edwards-Wilkinson (EW) [10] uni-
versality class. However, the measured coefficient v, is
so small that the crossover to EW behavior was esti-
mated to occur on time scales larger than t. = 2 x 10*
deposited monolayers. Subsequently it was found [11]
that the one-dimensional WV model does not obey the
standard scaling assumptions (2), (4), and (5b) due to
an anomalous time dependence of the average step size
a(t) ~ t*, a?(t) = G(1,t) that persists up to t = t* ~ 10°
deposited monolayers. Only for ¢ > t* the step size sat-
urates and conventional scaling is recovered. Since it is
impossible to distinguish between anomalous and conven-
tional scaling by looking at the scaling properties of the
width (5a) alone, all classifications based on an investiga-
tion of only the width must be regarded with great care,
especially in one dimension, where anomalous scaling has
been found in many different models [12,13].

From the preceding paragraph it has become clear that
the asymptotic behavior of the WV model can only be
determined if late times and therefore large system sizes
are investigated. This has been done [14] for system sizes
as large as L = 40000 (d = 1) and L = 1000 (d = 2).
By studying the scaling properties of the width and the
height-height correlation function some indications of a
crossover to EW behavior were indeed found. In the re-
mainder of this paper it will be shown that the asymp-
totic scaling behavior can convincingly be established al-
ready for much smaller systems (L = 256 for d = 2)
if the structure factor (3) and the time-time autocorrela-
tion function (6) are investigated, whereas the width (5a)
and the height-height correlation (1) function still give
misleading results for these system sizes. Recently [15],
the WV model was modified in an attempt to reduce
the crossover length and time, and logarithmic depen-
dences W(t), G(r,t) ~ logt were obtained, although only
within a very small regime. Furthermore, these models
with only instantaneous relaxation are quite sensitive to
changes in the algorithm, e.g., the slight differences be-
tween the WV model and the model of Das Sarma and
Tamborenea [16] already lead to significant differences in
the asymptotic behavior [9].

Figure 1 shows the width (5a) of the two-dimensional
WYV model for three different system sizes as a function
of the number of deposited monolayers. For ¢t < 10%
monolayers the data obey an almost perfect power law
with an exponent 3 = 0.21 £0.01. As already noticed by
Schroeder et al. [11], the d = 2 WV model shows anoma-
lous scaling for times smaller than ¢* ~ 103 monolayers.
This is also shown in Fig. 1: For t < t* the average step
size a(t) = G(1,t) obeys a power law a(t) ~ t* with
K =~ 0.048. This value is in agreement with the results
found in Refs. [11,14]. However, since this exponent is so
small the data may also be fitted by a logarithm. That
fit is shown in the inset of Fig. 1 and is at least as good
as the power-law fit. That the time dependence of the
average step size is in fact better described by a loga-
rithmic increase is also supported by fitting the average
step size to the form a(t) = ao(t* —1)/k + a1. Such a fit
gives values for x in the range 0.002-0.01 in agreement

~logt
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FIG. 1. Time dependence of the width W (¢) (upper curves)
and average step size a(t). The straight lines correspond to
power-law fits with the indicated exponents. The inset shows
the same a(t) data in a semilogarithmic plot and the straight
line corresponds to a(t) ~ log t+const.

with a behavior a(t) = aglogt + a;. Therefore, in the
following « is regarded as being zero effectively and no
distinction between conventional and anomalous scaling
is made. For ¢t 2 10* monolayers the average step size,
a(t) is basically constant independent of the system size,
indicating conventional scaling in that regime. Due to
the smallness of k for d = 2 anomalous scaling is much
less a problem than it is in one dimension, where it is
impossible to infer the universality class of a model from
the scaling behavior of the width alone [11].

There is no indication of a crossover to EW behavior
in Fig. 1. This remains true when W (t) is plotted on a
log-linear scale: There is no extended regime in which
W (t) ~ logt. Even if much longer times are simulated
[14] it is very hard to establish such a regime since it
is difficult to distinguish a crossover to smaller 8 values
from saturation effects due to the finite size of the sys-
tem. This is, besides the difficulties related to anomalous
scaling behavior, an intrinsic problem when calculating
exponents using W (¢) and makes this method inferior to
the methods discussed below.

In Fig. 2 the steady-state height-height correlation
function G(r) = G(r,t — oo) is shown. For r S 10
lattice constants the correlation function shows a power-
law behavior G(r) ~ r2¢, with ¢ ~ 0.65 + 0.05. This
value coincides within the error bars with the value that
is inferred from B = 0.21, obtained from Fig. 1, and the
exponent relation z = 2¢ + d [4]. It also agrees with pre-
viously published results [7,14]. For » > 10 the data do
not obey a power law. Again, it is impossible to decide
whether this is due to finite-size effects caused by the pe-
riodic boundary conditions as explained in Sec. IT or due
to a crossover to a logarithmic » dependence that would
be indicative of EW behavior. If the data are plotted on
a semilogarithmic scale there is a regime where the data
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FIG. 2. Steady-state height-height correlation function for
three different system sizes. The straight lines correspond to
G(r) ~ r* with ¢ = 0.65.

fall approximately on a straight line, but these intervals
do not coincide for the system sizes that are studied in
this work. Thus a regime G(r) ~ logr cannot be estab-
lished.

As shown above, a crossover to EW behavior in the
two-dimensional WV model cannot be found for system
sizes as large as L? = 256 x 256 if real-space corre-
lation functions such as the width (5a) or the height-
height correlation function (1) are studied, although such
a crossover was predicted [9] within this regime. On
grounds of measurements of surface diffusion currents
the crossover time was estimated as t. ~ 1/2_2 ~ 2 x 10%
and the crossover length should be of the order of I, =
2w /qe ~ 271’1/2_1/2 ~ 29.
the scaling behavior of correlation functions in momen-
tum space that these estimates are in fact fairly accu-
rate. Figure 3 shows the steady-state structure factor.
For k£ > ¢. ~ 0.11 the structure factor shows a power
law S(k) ~ k77 with v = 3.5 + 0.2 corresponding to
¢ ~ 0.75, in agreement with the results obtained from the
width and the height-height correlation function. But for
smaller k£ < g, there is a clear crossover to a regime cor-
responding to a much smaller surface roughness. If only
the five smallest £ modes for L = 256 of S(k) are fitted
to a power law an exponent v ~ 2.2 is obtained in good
agreement with EW behavior. As explained in Sec. II,
this smaller exponent is not influenced by finite size or
discreteness effects. Thus it is exactly the property of the
structure factor that the asymptotic regime at small & is
separated from the regime that is distorted by finite-size
effects that makes it possible to extract the asymptotic
behavior from S(k), whereas for the same system size
this is impossible using the Fourier transform G(r).

Steady-state correlation functions allow for the most
accurate calculation of the roughness exponent, but they
contain no information about the dynamical exponent.
In principle, one can use the exponent relation z =
to determine the dynamical exponent z, but quite often
it is desirable to have an independent measurement of
the dynamic properties, at least as a consistency check.

It will now be shown using

k

FIG. 3. Steady-state factor for three different system sizes.
The straight lines are power-law fits S(k) ~ k™7 with the
indicated exponents.

This can be done using the scaling properties of the auto-
correlation function ®(k,t) [17,6], which allows a direct
measurement of the exponent z. The results for the d = 2
WYV model for a system size L2 = 256 x 256 are shown in
Fig. 4 for the five smallest £ modes. Since the functional
form of the scaling function ¢(k*t) is not known [18], the
exponent z is determined by adjusting its value so that
the best data collapse is obtained. If such a data collapse
is attempted for the height-height correlation function,
two exponents ¢ and z have to be determined and this
procedure does not allow for a very reliable determina-
tion of the scaling exponents. Since the autocorrelation
function ®(k,t) depends only on the single exponent z, it
can, on the other hand, be determined quite accurately.
Figure 4 shows the data collapse for z = 2.1. If only
the smallest three & modes are taken into account, the
data collapse almost perfectly onto a universal curve. For
the larger two k values the data deviate significantly from
that curve, indicating already the crossover to the regime

‘_eg% o k=2m/L
08l B o k=2mV2/L
1 %y < k=4m/L
= 06- e + k=2mVB/L
b4 ] S g s k=4mV2/L
0.4 ] AAA:&%
] AAAAAA %
0.2 7 2y, ++§:‘39°‘G>g<o
0 ] rrTTTTTTTTT T rTTTTT T T 1
0 100 200 300
tk?

FIG. 4. Steady-state autocorrelation function ®(k,t) as a
function of the scaling argument k*¢ for z = 2.1. The system
size is L? = 256 x 256.
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with z = v ~ 3.5. The accuracy of the value z = 2.1 can
be estimated by plotting the same data also for z = 2 and
z = 2.2. In both cases the collapse is slightly worse than
the one shown in Fig. 4. Thus the result z = 2.1+0.1 ob-
tained from the autocorrelation function ®(k,t) is prob-
ably the most convincing evidence of the asymptotic EW
behavior of the two-dimensional WV model.

In principle ®(k, t) may only be calculated for two dif-
ferent k values to calculate the dynamical exponent z.
Thus this method is even more powerful than calculating
v from the steady-state structure factor S(k) and using
the exponent relation z = «, since in that case a larger
spread in k values is needed to establish a convincing
power-law fit. In fact, the results from Fig. 4 indicate
that the fit for small k£ shown in Fig. 3 is already in-
fluenced by the crossover at smaller length scales. The
disadvantage of determining z from the autocorrelation
function over the calculation of v from S(k) is the neces-
sity of running the simulation over a large period of time
in the steady state to collect the necessary data.

IV. CONCLUSION

In this paper it has been shown that the choice of
the correlation functions that are used to determine the
scaling exponents of a specific model of kinetic surface
roughening is extremely important. Previously it has
been shown [11,12] that using the scaling behavior of
the width can lead to totally misleading classifications
because of an anomalous time dependence of the aver-
age step size, especially in one dimension. But, even the
height-height correlation function and the structure fac-
tor, although mathematically equivalent since they are
related by a Fourier transform, are not equivalent when
it comes to the determination of the scaling exponents
on finite systems in a numerical simulation. If crossovers
at large length scales are present, finite-size effects due
to periodic boundary conditions make the determination
of, e.g., the roughness exponent from the height-height
correlation function less accurate than its determination
from the structure factor for the same system size. For
the two-dimensional WV model, for example, for a sys-
tem size of L? = 256 x 256 an estimate of the roughness
exponent obtained from G(r) yields { ~ 0.65 (see Fig. 2),
in agreement with the result obtained from the surface
width (see Fig. 1). However, the structure factor shows
a power law S(k) ~ k=7 with v ~ 2.2 for £ < 0.1. This
behavior is in agreement with EW scaling, i.e., ( = 0
and G(r) ~ logr, which was predicted for the d = 2
WYV model on the grounds of measurements of the sur-
face diffusion current [9]. Figure 3 also shows that the
exponents deduced from the real-space correlation func-
tions correspond to an extensive crossover regime with
S(k) ~ k=35 for k 2 0.1.

3213

The most convincing data that establish the asymp-
totic EW behavior of the two-dimensional WV model
are obtained from the steady-state autocorrelation func-
tion ®(k,t). This correlation function allows us to study
the temporal correlations of single ¥ modes. Only very
few modes with k£ < q. = 2n/l., l. being the crossover
length, are necessary to extract the asymptotic dynamic
exponent z as demonstrated in Fig. 4. This dynamic
exponent differs from the one that is extracted from the
width W (t) by a factor larger than 1.6: z ~ 2.1 compared
to z >~ 3.4.

Naturally, there are disadvantages in computing scal-
ing exponents from correlation functions in momentum
space. Most significantly, statistical fluctuations are
much more pronounced in S(k,t) and ®(k,¢) in com-
parison with G(r,t). Thus many more independent runs
are needed to obtain the necessary statistics. Addition-
ally, to obtain the autocorrelation function ®(k,¢) the
simulations must be run in the steady state much longer
to access sufficiently large time intervals ¢: The data for
Fig. 4 were generated in runs in which the number of
monolayers that were deposited in the steady state are
6 times larger than the number of monolayers that are
needed to reach that steady state. Alternatively, one
could have computed real-space correlation functions on
larger lattice sizes within the same CPU time. If the data
shown in Fig. 2 for the system size L? = 256 x 256 are
plotted on a semilogarithmic scale, one finds a regime
25 < r < 60 where the correlation functions is roughly
proportional to logr. In order to establish this behavior
unambiguously this interval must be increased to cover at
least one order of magnitude. Thus system sizes as large
as L? = 1000 x 1000 are needed and the simulation still
must reach the steady state in order to distinguish between
crossover and finite-size effects. The CPU time needed is
roughly 256 times larger than the time needed to run the
2562 system into saturation. To calculate ®(k,t) the sim-
ulation was carried out 6 times longer in the steady state
and the data were time averaged as well as ensemble av-
eraged over 20 independent runs. Even if we assume that
two runs are sufficient to calculate G(r,t), the CPU time
required to calculate ®(k,t) for L = 256 is still smaller
by a factor of roughly 4. If only S(k,t) is calculated, this
factor is much larger. Therefore, momentum space cor-
relation functions such as the structure factor S(k) and
the autocorrelation function ®(k,t) are generally supe-
rior for obtaining high-precision estimates for the scaling
exponents in models for kinetic surface roughening.
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